21. Cycloaddition of 3,4-Dimethoxyfuran with 1,4-Benzoquinones under High Pressure¹)

by Janusz Jurczak, Tomasz Kożluk and Marek Tkacz

Institute of Organic Chemistry and Institute of Physical Chemistry, Polish Academy of Sciences, 01-244 Warszawa, Poland

and Conrad Hans Eugster

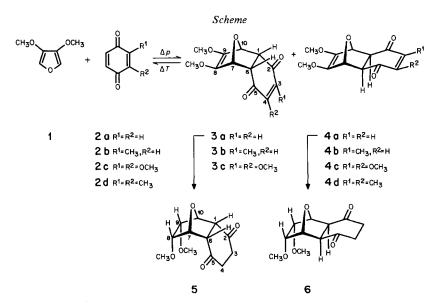
Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(16.XI.82)

Summary

High-pressure cycloaddition of 3,4-dimethoxyfuran with 1,4-benzoquinone, toluquinone and 2,3-dimethoxy-1,4-benzoquinone show, at 7 kbar and room temperature, prevailing formation of *endo*-isomers. Raising pressure (or temperature) results in a surprising increase of the *exo*-isomer. By catalytic hydrogenation of a mixture 3a/4a, followed by chromatography, the pure diastereomers 5 and 6 were obtained.

In one of our previous publications dealing with the cycloadditions of 3,4-dimethoxyfuran (1) we demonstrated the surprising ease of adduct formation with 1,4-benzoquinones 2 at room temperature and normal pressure [2]. The crystalline products from such *Diels-Alder* reactions were shown to possess the *endo*-structures 3a (yield 68%), 3b (86%), and 3c (90%), respectively, except the single case of the addition with 2d where the *exo*-structure 4c (46%) appeared²).


As an explanation for this differential behaviour we assumed dissimilar solubilities or speed of crystallization of the stereoisomers, present in solution by addition and *retro-Diels-Alder* reactions typical for such systems.

In the present communication we report on the influence of both, high pressure and variation of temperature on the course of cycloadditions of 1 and 2.

The 3,4-dimethoxyfuran (1) [3] was reacted with 2a, 2b and 2c at 7-19 kbar and 25 or 50° in toluene as solvent during 20 h to give high yields of a mixture of the *exo-* and *endo-*adducts 3 and 4, respectively. After completion of the reaction, the crystalline, pure *endo-*adducts 3 had precipitated from the solvent and were isolated by filtration. To the filtrate, ether was immediately added to yield a second

¹⁾ Organic Syntheses under High Pressure, Part V. For Part IV see [1].

²⁾ Mother liquors were not examined for other stereoisomers. Solutions of 3a, 3b and 3c slowly revert to starting materials and also recombine to 4a, 4b, and 4c, respectively, except for solutions of 4d which remained stable under these conditions [2].

crop of pure 3. The mother liquors, after evaporation *in vacuo*, were monitored by ¹H-NMR. The *endo/exo*-ratios of each reaction were estimated from the combination of weight of 3 and interpretation of the ¹H-NMR. spectrum at the signals of H-C(1)/H-C(6) and H-C(7)/H-C(10); see *Tables 1* and 2.

Table 2 gives the results of high-pressure influence on the *endo/exo*-ratios in the reaction of 1 with the *p*-benzoquinones. At 7 kbar the general picture is in good accord with our earlier observations at normal pressure [2]. However, to our surprise, at higher pressure the amount of the *exo*-isomer increases. Whether differences in the volumes of the transition states under high pressure or acceleration of the *endo* \rightarrow *exo*-isomerization speeded up by pressure (and also by temperature) play a role, has to be investigated [4].

After catalytic hydrogenation of a (54:46)-mixture of **3a** and **4a** with Pd/C, followed by chromatographic separation, the diastereomers **5** (31%, m.p. 117-120°) and **6** (42%, m.p. 147-150°) were obtained. Their structures depicted in the *Scheme* are based on X-ray structure determinations [5]. In accord with earlier observations on the stereochemistry of the hydrogenation of *Diels-Alder* adducts with 3,4-dimethoxyfuran (1) [1] [6], again exclusive addition of H₂ from the *exo*-side was observed.

Experimental Part

General Remarks. High-pressure experiments were performed in an apparatus of the piston-cylinder type described in our earlier papers [1] [7].

Melting points (m.p., uncorrected) were determined on a Kofler block. ¹H-NMR. spectra were recorded with a Jeol-JNM-4H-100 spectrometer (δ scale, TMS at 0 ppm). IR. spectra (cm⁻¹) were recorded on a Unicam-SP-200 spectrophotometer. Silica gel G (Merck) was used for TLC. and Merck 60 silica gel for column chromatography. Typical TLC. systems were ligroin/ethyl acetate 7:3 (ν/ν) or 1:1 (ν/ν).

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Table 1. ¹ H-	Table 1. ¹ H-NMR. data of endo- and exo-adducts 3 and 4, and of tetrahydro derivatives 5 and 6	d exo-adducts 3 and 4,	, and of tetrahydro	derivatives 5 and 6		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Com- pound	Solvent	H-C(1), H-C(6)	H-C(3),H-C(4)	H–C(7), H–C(10)	CH ₃ O-C(8), CH ₃ O-C(9)	CH ₃ -C(3)	CH ₃ O-C(3). CH ₃ O-C(4)	H-C(8), H-C(9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3a ^a)	D ₆ -Aceton	3.36	6.53 (s, 2 H)	5.01 (m, 2 H)	3.53 (s, 6 H)	ŧ	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3a ^b)	CDC1 ₃	3.50	6.71 (s, 2 H)	5.22 (m, 2 H)	3.68 (s, 6 H)	I	I	ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4a ^b)	CDCI3		6.80 (s, 2 H)	4.99 (s, 2 H)	3.82 (s, 6 H)	1	I	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$3b^{a}$)	CDCI ₃		- 6.43 (qa, 1 H) ^c)	5.05 (m, 2 H)	3.56 (s, 6 H)	1.93 (d, 3 H) ^c)	1	J
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3b ^b)	CDCl ₃		- 6.60 (qa, 1 H) ^c)	5.18 (m, 2 H)	3.68 (s, 6 H)	$2.00 (d, 3 H)^{c}$	1	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4b ^b)	CDCI3		- 6.81 (qa, 1 H) ^c)	5.00 (s, 2 H)	3.83 (s, 6 H)	2.08 (d, 3 H) ^c)	1	J
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3c ^a)	CDCI3			5.13 (m, 2 H)	3.66 (s, 6 H)		3.95 (s, 6 H)	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3c ^b)	CDCI3		1	5.18 (m, 2 H)	3.72 (s, 6 H)	I	4.02 (s, 6 H)	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4c ^a)	ccl4		1	4.77 (s, 2 H)	3.73 (s, 6 H)	4	3.93 (s, 6 H)	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4c ^b)	CDCI3		1	4.98 (s, 2 H)	3.83 (s, 6 H)	I	4.07 (s, 6 H)	I
$ \begin{array}{ccccccc} C_{0} D_{6} & 3.18 \ (m, 2 \ H) & 2.09 \ (s, 4 \ H) & 4.86 \ (m, 2 \ H) & 3.28 \ (s, 6 \ H) & - & - & \\ CDC(3 & 3.12 \ (m, 2 \ H) & 1.64 \ (s, 4 \ H) & 4.85 \ (m, 2 \ H) & 2.95 \ (s, 6 \ H) & - & - & \\ C_{0} D_{6} & 2.70 \ (m, 2 \ H) & 1.64 \ (s, 4 \ H) & 4.85 \ (m, 2 \ H) & 2.95 \ (s, 6 \ H) & - & - & \\ \end{array} $	5 ^b)	cDCl ₃		2.73, 3.03 (2 m, 4 H)	5.00 (m, 2 H)	3.43 (s, 6 H)	ι	1	3.73 (m, 2 H)
$ \begin{array}{cccc} \mbox{CDC}_3 & 3.12 (m, 2 H) & 2.60, 3.20 (2 m, 4 H) & 5.10 (m, 2 H) & 3.28 (s, 6 H) & - \\ \mbox{C}_6 \mbox{D}_6 & 2.70 (m, 2 H) & 1.64 (s, 4 H) & 4.85 (m, 2 H) & 2.95 (s, 6 H) & - \\ \mbox{OMHz} & [2]. \mbox{b} \mbox{This paper, 100 MHz} & 9]^4 \mbox{J} = 2 \mbox{Hz} & 2.91 (s, 6 H) & - \\ \mbox{T} & T \mbox{aris} & 2.70 (m, 2 H) & 1.64 (s, 4 H) & 4.85 (m, 2 H) & 2.95 (s, 6 H) & - \\ \mbox{T} & T \mbox{T} & T \mbox{aris} & 2.10 \mbox{MHz} & 9]^4 \mbox{T} = 2 \mbox{T} & T \mbox{aris} & 0 \mbox{fill} \mbox{ressure on endo/exo-ratio} & 0 \mbox{fill} \mbox{exolutions} & 3 \mbox{and} \mbox{A} \m$	5 ^b)	C,D,		2.09 (s, 4 H)	4.86 (m, 2 H)	3.06 (s, 6 H)	I	I	3.26 (m, 2 H)
Cebb $2.70 (m, 2H)$ $1.64 (s, 4H)$ $4.85 (m, 2H)$ $2.95 (s, 6H)$ $ 0$ MHz [2]. ^b) This paper, 100 MHz. $c^{9} 4 J = 2 Hz$. 1.64 (s, 4H) $4.85 (m, 2H)$ $2.95 (s, 6H)$ $ T$ Table 2. Influence of high pressure on endo/exo-ratio of the cycloadducts 3 and 4 T [°C] Yield [%] endo/exo Yield [%] endo/exo T [°C] Yield [%] endo/exo Yield [%] endo/exo T [°C] Yield [%] endo/exo Yield [%] endo/exo 25 90 89:11 95 84:16 95 25 92 83:17 91 76:24 25 91 34:66 92 48:52 50 91 34:66 92 48:52	(p)	CDCI3		2.60, 3.20 (2 m, 4 H)	5.10 (m, 2 H)	3.28 (s, 6 H)	1	I	3.75 (m, 2 H)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(p)	C ₆ D ₆		1.64 (s, 4 H)	4.85 (m, 2 H)	2.95 (s, 6 H)	1	I	3.23 (m, 2 H)
Table 2. Influence of high pressure on endo/exo-ratio of the cycloadducts 3 and 4 T[°C] Yield [%] endo/exo T[°C] Yield [%] endo/exo 3a + 4a) (3a/4a) (3b+4b) 25 90 89:11 26 95 84:16 97 25 93 54:46 89 25 93 54:46 89 26 91 34:66 92 48:52	a) At I(^b) This paper, 100 M						
Table 2. Influence of high pressure on endo/exo-ratio of the cycloadducts 3 and 4 T [°C] Yield [%] endo/exo Yield [%] endo/exo 25 90 89:11 95 89:11 50 92 84:16 97 84:16 25 93 84:16 97 84:16 25 93 84:16 97 84:16 25 93 54:46 89 68:32 26 91 34:66 92 48:52									
T $[^{\circ}C]$ Yield $[\%]$ endo/exoYield $[\%]$ endo/exo $(3a+4a)$ $(3a/4a)$ $(3b+4b)$ $(3b/4b)$ 25 90 $89:11$ 95 $89:11$ 50 95 $84:16$ 97 $84:16$ 25 92 $83:17$ 91 $76:24$ 25 93 $54:46$ 89 $68:32$ 50 91 $34:66$ 92 $48:52$			Table	2. Influence of high pres.	sure on endo/exo-rati	o of the cycloadduc	ts 3 and 4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<i>p</i> [kbar	[T[°C]		do/exo	Yield [%]	endo/exo	Yield [%]	endo/exo
25 90 89:11 95 89:11 50 95 84:16 97 84:16 25 92 83:17 91 76:24 25 93 54:46 89 68:32 50 91 34:66 92 48:52					a/4a)	(3b + 4b)	(3b/4b)	(3c + 4c)	(3c/4c)
50 95 84:16 97 84:16 25 92 83:17 91 76:24 25 93 54:46 89 68:32 50 91 34:66 92 48:52	7.0		25		:11	95	89:11	16	79:21
25 92 83:17 91 76:24 25 93 54:46 89 68:32 50 91 34:66 92 48:52	7.0		50		:16	67	84:16	I	t
25 93 54:46 89 68:32 50 91 34:66 92 48:52	11.0		25		:17	16	76:24	90	79:21
2 2 34:66 92 48:52 48:52	19.0		25		: 46	68	68:32	16	74:26
	19.0		50		: 66	92	48:52	92	70:30

220

1. 7, 10-Epoxy-8, 9-dimethoxy-cis-1-transoid-1, 10-cis-10-bicyclo [4.4.0]-deca-3, 8-dien-2, 5-dione (3a) and 7, 10-Epoxy-8, 9-dimethoxy-cis-1-cisoid-1, 10-cis-10-bicyclo [4.4.0]deca-3, 8-dien-2, 5-dione (4a). Typical high-pressure procedure: 216 mg (2 mmol) of 2a and 256 mg (2 mmol) of 1 were dissolved in 3.5 ml of toluene. The mixture was placed in a *Teflon* ampoule [1] which was inserted into the high-pressure vessel filled with hexane as transmission medium and closed by a mobile piston. Then the highpressure unit was placed between the pistons of a hydraulic press and the pressure raised to 6.8 kbar. After stabilization of the pressure, the heater was switched on, whereupon the temp. was raised to 50° and the pressure to 7.0 kbar. The mixture was kept under these conditions for 20 h, cooled to r.t. and decompressed. After decompression, crystalline 3a which precipitated under high-pressure was immediately filtered off, and 5 ml of ether was added to the filtrate, and this mixture was cooled to -10° to give the second crop of crystalline 3a. The residue obtained after evaporation of ether and toluene was examined by ¹H-NMR. The integral showed the ratio 3a/4a to be 1:4. From combination of the weights and integration, the yield of 3a and 4a was calculated as 447 mg (95%).

2. 7, 10-Epoxy-8endo, 9endo-dimethoxy-cis-1-transoid-1, 10-cis-10-bicyclo [4.4.0]decane-2, 5-dione (5) and 7, 10-Epoxy-8endo, 9endo-dimethoxy-cis-1-cisoid-1, 10-cis-10-bicyclo [4.4.0]decane-2, 5-dione (6). The mixture of 472 mg 3a and 4a (54:46) was dissolved in 20 ml of methanol, and 30 mg of 10% Pd/C was added; hydrogenation at 4 atm for 3 h at r.t. gave, after filtration and evaporation of the solvent, a mixture which was separated by column chromatography (silica gel, ligroin/ethyl acetate 9:1) to give 148 mg (31%) of 5; m.p. 117-120°. - IR. (KBr): 1705 (C=O), 1190, 1145, 1022 (C-O-C). -¹H-NMR.: s. Table 1. - MS.: 240 (M^{+}).

Moreover 200 mg (42%) of **6** were isolated, m.p. 147-150°. - IR. (KBr): 1700 (C=O), 1195, 1150, 1110, 1015 (C=O-C). - 1 H-NMR.: s. *Table 1.* - MS.: 240 (M^{+}).

REFERENCES

[1] J. Jurczak, T. Kożluk, S. Filipek & C.H. Eugster, Helv. Chim. Acta 65, 1021 (1982).

- [2] A.A. Hofmann, I. Wyrsch-Walraf, P.X. Iten & C.H. Eugster, Helv. Chim. Acta 62, 2211 (1979).
- [3] P.X. Iten, A.A. Hofmann & C. H. Eugster, Helv. Chim. Acta 61, 430 (1978).
- [4] J. Jurczak, T. Kożluk & A. L. Kawczyński, to be published.
- [5] K. Suwinska, J. Lipkowski, J. Jurczak, T. Kożluk & G. D. Andreetti, to be published.
- [6] P.X. Iten, A.A. Hofmann & C.H. Eugster, Helv. Chim. Acta 61, 2202 (1979).
- [7] J. Jurczak, M. Chmielewski & S. Filipek, Synthesis 1979, 41.